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Summary—This paper is concerned with the effects of dissociation on temperatures

and heat transfer, both for bluff and for slender bodies and considers the equili-
brium temperatures (aerodynamic heating balanced by radiation) that might be
reached in hypersonic flight. Thermochemical equilibrium is assumed in all cases.

The stagnation temperature of a hypersonic flow can depend on pressure as
well as on enthalpy (because of dissociation) and illustrations are given of the
stagnation temperatures that would be achieved by various types of compression.

l lest transfer rates to bluff bodies are taken from the work of Fay, Detra, Kemp
and Riddell. For slender bodies, the "Couette flow" solution is modified to be
applicable to a flat plate boundary layer, and the influence of atomic diffusion on
energy profiles is shown.

Consideration of equilibrium temperatures indicates that slender shapes could
be very suitable for hypersonic flight, provided leading edges and tips could be
protected (e.g. by mass transfer cooling).

1. INTRODUCTION§

The term "hypersonic" is commonly used to describe flight at Mach
numbers greater than about 5, this being a region where the linearized
equations of supersonic flow are no longer adequate, where increased
boundary layer thicknesses interact appreciably with flow fields around
slender bodies and where aerodynamic heating assumes major importance
in missile or aircraft design.

A further boundary occurs at Mach numbers of the order of 8-9,
when there is sufficient kinetic energy to provide some dissociation of the
oxygen molecules in air and, as speeds are increased above this value,
appreciable proportions of the constituents of air may be dissociated (and
ionized) by passage through the normal shock wave ahead of the stagnation
point of a body. This stagnation point will always exist, even on bodies
or wings with nominally sharp tips or leading edges, and, furthermore,
research such as that of Hammitt and Bogdonoff 0) at Princeton, shows
that leading edge effects may assume prime importance in determining the
entire flow field around a slender body when the Mach number is greater
than 10.

Even at points well away from the tip or leading edge, where the local
inviscid flow may not be dissociated, the boundary layer of retarded air
provides the means of dissociating the air close to the surface of the body.
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Once dissociation has appeared, one is dealing no longer with the
"ideal gas" of classical aerodynamics, which assumes that the ratio of the
specific heats (y) is constant. Instead we are dealing with a real gas
composed of molecules and atoms (and ions), whose concentrations may
vary from one point to another and new species, such as NO, can make
their appearance.

Thus, one might regard the range of Mach numbers from 5 up to 8 or 9
as a transition region between the truly supersonic and the truly hypersonic
and it is with heat transfer in this truly hypersonic region that the present
paper is concerned.

There has been a considerable amount of research in recent years on
the topic of heat transfer with dissociation, of which references 2-4 form
specific examples. The present purpose is to outline its main features,
both for blunt and for slender shapes, and to show how the structure of
the boundary layer is modified.

A convenient introduction is given by stagnation temperature, which
is no longer single-valued, but depends on the type of compression, and
specific examples are given in Section 2. -

Equilibrium temperature, when there is a balance between the
aerodynamic heating to the surface and the radiation away from the surface,
is a more realistic temperature for the designer and the succeeding sections
of the paper aim to show how this may be controlled by choice of flight
conditions. Aerodynamic heating rates for bluff and for slender bodies
are considered in Sections 3 and 4 and these are combined with radiative
heat transfer to provide the estimates of equilibrium temperature in
Section 5. In all cases it is assumed that the gas is in thermochemical
equilibrium, and that continuum flow conditions prevail.

As mentioned already, leading edge effects can dominate the flow fields
around slender bodies at truly hypersonic speeds and this adds to the
complexity of a general analysis. For simplicity, two extreme cases are
considered. The first is the hemisphere, which is representative of the
bluff body, or of the tip of a slender body (Section 3). The second is the
flat plate with sharp leading edge, or cone with sharp tip, which represents
conditions on slender shapes well away from the region of influence of
the leading edge (Section 4). Slender shapes with leading edges or tips of
practical thickness may lie in between these extremes and some discussion
is included in the relevant part of Section 5.

2. "STAGNATION" TEMPERATURES AND

TIIERMOCHEAIICAL CONSIDERATIONS

The total specific enthalpy (Ho) locally in a stream-tube of a gas flowis
given by

	

?>u2 (1)

where  II  is the local "static" enthalpy and u is the local velocity. These
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enthalpies include any energy that has been used to dissociate molecules
into atoms. For simplicity assume a single diatomic gas (e.g. pure oxygen
or pure nitrogen), then

H = CliiHm Ha (2)

\\here cm and  ca  are the mass fractions (per unit volume) of the molecules
and atoms respectively, and Hm and  Ha  are the specific enthalpies of the
molecular and atomic species.

By definition,

Cm + Ca = 1

and at a given temperature, the difference between  H,,  and H„, will be the
dissociation energy  (D),  i.e.

Ha — H„, = D.

Then, if for  ca  constant (constant concentration) we write

dHm = CpmdT

and
dHa = CpadT

where  CI,  is specific heat at constant pressure, the differential form of
equation 2 becomes

dH dT D dca (3)
where

Cp = C711C + Ca Cpa

= Cpm if  cpm = Cpa.

Hence, if the dissociation energy does not vary with temperature, Eq. (3)
integrates to give

H = cp dT c„ D (4)

as the relationship between enthalpy, temperature and atomic mass
fraction.

Since the dissociation energies of the major constituents of air are
3.69 kcal/g for oxygen and 8.03 kcal/g for nitrogen, it is apparent that the
amount of dissociation has a considerable effect on the temperature for
a given enthalpy. Additional terms appear in the above equations if the
analysis is made for air instead of a single gas, but the results are funda-
mentally the same (e.g. see refs. 3 and 9).

The remainder of the paper is concerned with gas in thermochemical
equilibrium at all points (i.e. reaction rates are fast compared with transit
times). Assuming that dissociation proceeds bv two-body collisions, but
that recombination demands the presence of a third body, the equilibrium
degree of dissociation at a given temperature depends on the density (or
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pressure). This is illustrated by considering Lighthill's "ideal dissociating
gas"(") which gives

(„2 p D exp (
1 — C(( p

for equilibrium atomic concentration in terms of density  (p)  and tempera-
ture (T). pl.) and 'TD are the characteristic density and temperature of
dissociation and approximately take the constant values 150 gicin3 and
59,000K for oxygen and 130 g/cm3 and 113,000 K for nitrogen(").

Finally, the equation of state reads

p = p (1 + Ca) RT/Wm  (6)

where i is the universal gas constant and 147„, is the molecular weight of the
original molecular species. Between them, Eqs. (4-6) would determine the
equilibrium temperature for a given enthalpy and density or pressure. In
application, for air, greater accuracy can be obtained by using the charts of
ref. 8, as has been done in the remainder of this section.

Returning to Eq. (1),

Ho= H +1 u= (1)

Ho is the enthalpy that would be reached if the gas were brought to rest
and during this process there was no transfer of energy across the boundary
of the stream tube. We may call this the "stagnation" enthalpy. The
"stagnation" pressure will depend on the means by which the gas is
brought to rest (e.g. by isentropic compression or through shock waves,
etc.) and hence, if the gas is dissociated, the "stagnation" temperature
will also depend on the type of compression.

This is illustrated in Fig. 1, which gives plots of "stagnation"
temperature (°K) against flight speed (ft,isec or km, sec) for different
types of compression, for altitudes of 100,000 ft (Fig. la) and 200,000 ft
(Fig. 1 b).

Four curves, derived from refs. 8 and 9, are included.
The topmost curve gives the stagnation temperature that would be

given by classical "ideal gas" theory wherein cp—const. and  y=cp:c v—

const.,  giving

To= T ± Pk])

(where V is flight speed)
or

To , y — 1

2
M2

(where M is flight Mach number).
This curve is labelled "isentropic compression" but under ideal gas

conditions it could apply also to the other cases considered.
Reading downwards, the next curve is for the isentropic compression

1'.1),T) (5)



Features of Ifypersonic I leat Transfer 291

10000

ALTITU"

STA6NAT ION POINT

•1(
\,\

4000
ISENTROPIC COMPRESSION

(a) IDEAL 24

(0) REAL

6000


0000

a
'FLAT PLATE'

2000

00
50000,00

.; FT ISEC1.5.000
20.000zopoo

o 3 45 6




V KM /SEC.




10,000





ALTITUDE 200,000 FT.





(610,.1)





8000





STAE,NATION POINT,

1SENTROPIC COMPRESSION





(a.)IDEAL 1. =1.4





(6) REA L




6000





4000 -

'FLAT PLATE

-

2000

0
5,000 10,000 is000 z0000 25,000


V FT/ SEC

2 3 4 5 6

11/1/SE

FIG. 1. Dependence of stagnation temperature on type of compression at

altitudes of 100,000 and 200,000 ft.



R. J. MONAGHAN, L. F. CRABTREE and B. A. \\ oons

of a real gas. In this case the stagnation pressures become exceedingly
large as the velocity is increased and, at 100,000 ft (Fig. la), went beyond

the range of the charts of ref. 8 for speeds above 10,000 ft:sec. The

remainder of the curve was obtained by extrapolation of the data in ref. 9
and is shown as a broken line.

The next curve gives the temperature that would be achieved at the
stagnation point of an insulated body (neglecting radiation). In this case,
compression is through a normal shock wave, followed by isentropic
compression to rest.

The lowest curve shows the temperatures that would be reached at the
surface of a flat plate (with ideally sharp leading edge) under zero heat
transfer conditions with a recovery factor of unity. In this case the pressure
is equal to the ambient pressure.

At both altitudes the trends are the same. Ideal gas theory gives a
reasonably good representation of reality (to the scale of the figure) at
speeds up to the order of 3000-4000 ft:sec. Above this the real gas values
drop away from the ideal because of increase in specific heat due to
vibrational excitation of the molecules. However, the temperature-
velocity relation remains single valued up to speeds of the order of
6000 ft. sec when dissociation effects begin to appear. Above this speed
there is an increasingly marked dependence of temperature on pressure:
the lower the pressure, the greater the amount of dissociation and the
further the departure from ideal gas values.

This dependence on pressure is illustrated further by comparing
corresponding curves in Figs. la and lb, where the increase in altitude
decreases the ambient pressure from around 10-2 atm to around
4 :10-4 atm. The corresponding drops in stagnation pressures decrease
the stagnation temperatures by up to 1000-'C at the upper end of the
speed range.

The "flat plate" curves give a good illustration of the sequence of
dissociation. The first plateau, around 10,000 ftlsec, corresponds to
dissociation of oxygen. This is essentially complete before dissociation of
nitrogen starts 00 and the curve steepens, only to flatten out again around
15,000 ftisec as dissociation of nitrogen takes control. For the altitudes
and speeds considered, ionization has little effect on stagnation
temperature.

Similar trends at similar speeds can be seen on the other curves.
These stagnation temperatures are not only of academic interest. For

example, the isentropic compression curve is of considerable relevance
to the wind tunnel designer, if he thinks of expanding gas isentropically
from rest in a settling chamber in order to secure completely representative
flow in the working section. Thus if the workino- section density and
temperature are to be equivalent to an altitude of 100,000 ft, a flow
velocity of 15,000 ft/sec would call for settling chamber conditions
around 7500 K temperature and 104atm pressure. Increasing the altitude to
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200,000 ft would reduce these values to around 6500 K and less than
103 atm. Further discussion of the wind-tunnel problem will be found
in ref. 13.

The aircraft or missile designer may consider these stagnation
temperatures to be more of academic interest, since the presence of
radiation away from a surface means that they would never be attained,
and, when calculating aerodynamic heat transfer, the relevant parameter
is enthalpy, not temperature (and this enthalpy always includes the
dissociation energy). However, when making heat transfer calculations or
when studying surface reactions, the local concentrations of atoms can
be of importance and these are related to the local temperatures. Thus,
for a given flight speed, more atoms could be present in a "flat plate"
boundary layer than in a stagnation point boundary layer. The same would
apply to ions (assuming that thermochemical equilibrium occurs in both
cases), so that for several reasons there is an interest in determining
enthalpy and concentration profiles of boundary layers. These are con-
sidered, for the flat plate, in Section 4, along with formulae for aerodynamic
heating rates.

3. HEAT TRANSFER, WITH DISSOCIATION, TO

BLUFF BODIES

This section gives the formulae used for estimating heat transfer at a
stagnation point or over the forward portion of a hemisphere with laminar
boundary layer.

3.1 Stagnation Point Heat Transfer

The formulae used are taken from the work of Fay, Detra, Kemp and
Riddell(3,5). Fay and Riddell(3) obtain the formula

q = 0.76 Pr-°•6 (pw iiis)0•1 (ps p,$)0•4 + (Le°.32 — 1)

x (115— 11,4) (c1"1- (7)dx

for heat transfer to a stagnation point, assuming that chemical reaction

rates are so fast that the gas is in equilibrium at all points. This equation

was obtained by correlating the results of numerical calculations and, in it,


q =heat transferred per unit area and time

p— density

,a= viscosity

II—specific enthalpy

where suffix s refers to stagnation point conditions (outside boundary
layer) and suffix w refers to wall (surface) conditions
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H n= average atomic dissociation energy X atom mass
fraction (outside boundary layer).

du,)
— velocity gradient at stagnation point (along surface)

ay, s

Pr —Prandtl number (cp/t/k where k is thermal conductivity
and C),is specific heat at constant pressure).

Le —Lewis  number (pc),D10 k where D„ is the diffusion co-
efficient, atoms through molecules).

Equation (7) is quoted so that it may be compared with the flat plate
formula to be obtained in Section 3.3, but a more convenient form for
calculation is given in the Addendum to ref. 5 by Detra, Kemp and
Riddell. This is

q 04  (
9780  

(,.  )3'1'  (Hliss HI I 3:0) C.H.U./ft'sec
r - c

(8)

where ro is the body nose radius

p cc= ambient density

psL=sea-level density

V =flight  speed

Vc =satellite speed (taken as 26,000 ft, sec)

//3 00=specific enthalpy at 300°K.

3.2  Forward Portion of a Hemisphere

Following the analyses of Lester Lees(2) and of Kemp and Riddell(5),
the mean laminar heat transfer to a hemisphere is taken to be half the value
obtained for the stagnation point by Eq. (8).

4. HEAT TRANSFER, WITH DISSOCIATION, TO

AN IDEAL FLAT PLATE

As mentioned at the end of the Introduction, the analysis of this section
will be for the case of boundary layer development on a flat plate under
zero pressure gradient.

Having considered the boundary layer equations (Section 4.1), the
approach is made via Couette flow (Section 4.2) whose results are modified
to be applicable to boundary layer flow (Section 4.3). Sections 4.2 and 4.3
are mainly analytical, and aim to show the effects of dissociation on the
structure of the boundary layer and, where necessary, use pure oxygen
as the working fluid.

Heat transfer with air as the working fluid, is considered for laminar
boundary layers in Section 4.4 and for turbulent layers in Section 4.5.
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4.1  Boundary Layer Equations

Neglecting thermal diffusion of the species, the boundary layer equations
for a two-component gas may be written as follows (taking co-ordinate x
along the surface and co-ordinate y normal to the surface).

Continuity of .1Iass

a a
p + --(pv) =ax ay

where (u,  y) are the components of velocity in the directions (x, y).

Continuity of  ith  species (of  2)
(Concentration equations)

ac• aci a ( ac) aci
+ pv —ay= y p"12 Ty Pax

where Ciis the mass fraction of the ith species, and t is time.

Momentum

au au_ dp a I au\
ax 4- Pv ay dx ay ‘,P ay/

where p is the static pressure.

Energy

pu LH + pv
dp a I aT\ a

ax ay " 4-Ty,) + 6
ac

pH5 D„—
ay)

 // (

au 2
6 (12)

where II is the specific enthalpy of the mixture

Hi is the specific enthalpy of the ith component

and T is temperature.

In the present case, the gas is composed of molecules and atoms and its
enthalpy is

H =  d + c„D (4)

where (77)is a mean specific heat =  cmcpm cacpa

(= cpm if cpm = cpa)
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Thus, the enthalpy TI includes the dissociation energy, and since II-
11„,HD,  and c0,---c„=1, the energy equation becomes

— ray =
aH dp a al') a (— pl)D

an
ay k

dx Y aY ' 12 ay)

\ ay/

2

(13)

An alternative expression in terms of total enthalpy 110,where

110-11-1-!,u2

can be obtained by combining Eqs. (11) and (13) and at the same time we
shall use Eq. (4) to express the conduction term karay) in terms of
enthalpy and atomic concentration. The result is

au„ aHo a fk a acal
pu  pv  = — — (H !,-Pr u2) ( Le —1) —' (14)

ax ay ay(cvay ay)
The main feature of Eqs. (13) and (14) is the appearance of the diffusion

term as a means of transferring energy across the streamlines.
If the Lewis number is unity, the diffusion term vanishes, in Eq. (14),

and the equations reduce to the same form as those for a single-component
boundary layer, of which the standard solutions would apply. Thus for
the flat plate with zero pressure gradient, the "intermediate"09 or
"mean"(12) enthalpy formulae for heat transfer would be applicable (and
heat transfer coefficients should be based on enthalpy differences, not on
temperature differences).

The Lewis number for air is about 1.4, at most(9), for the temperature
ranges in which we arc interested, so that its effects would not be expected
to be large. These can be studied by a modification of Couette flow as
described below.

4.2 Conette Flow

This is the flow in the gas between two parallel flat plates (each of
infinite extent) when one plate is moving relative to the other, say in the
direction of the x-axis. In this case there is no variation of gas properties
in the x-direction, the normal velocity (z.) is zero and the left-hand sides
of Eqs. (9, 10, 11) and (14) vanish.

Details of the solution may be found in ref. 6, but in essence the
disappearance of the convection terms means that shearing stress (Eq. 11
with dp/dx 0) and energy transfer across streamlines (Eq. 14) are constant
across the gas layer. By combination of Eqs. (11) and (14), followed by
double integration, we then obtain the enthalpy-velocity relation

// II,,  Pr(P-1: u !,Pr 02 (Le 1) I) (c„ c.) (15)
Tee
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where Te) is shearing stress,

suffix w refers to conditions at the lower wall (u =0),

and qu, is the heat flow  from  the gas in  to  the lower wall.

If u=it,  at the upper wall (y=8), then it follows that under zero heat
transfer conditions (q,=0) the enthalpy at the lower wall is given by

= H, =Ii i + Wir u,2 + (Le — 1) D (e„, — c„,) (16)

where H, is the "recovery" enthalpy

and car is the atomic mass fraction at the recovery enthalpy and
appropriate pressure.

Note that if  Le  =1, or if there is no dissociation, the recovery factor is
Pr  to the power unity in Couette flow, as compared with Pr in boundary
layer flow. Furthermore, if Le01 and c„,<C„, (the latter is bound to be

the case) the effect of atomic diffusion is to reduce the recovery enthalpy
below its value for  Le =1.

Conclusions can also be reached concerning heat transfer coefficients,
but these are not significant for present purposes.

4.3  Approximation to the Boundary Layer on a Flat Plate under Zero
Pressure Gradient

Considering the laminar boundary layer on a flat plate under zero
pressure gradient and without dissociation, ref. 7 shows that Eq. (15)
gives an excellent representation of the true enthalpy-velocity relation(")
for values of u'u, up to 0-8. To secure this agreement it is necessary to
insert the boundary layer value of (q,,,,rw)in the second term, and to use
the boundary layer zero heat transfer condition

/1, = H, =Iii ?_,Pru12 (17)

in place of the Couette flow relation of Eq. (16).
Exactly the same procedure should apply with dissociation if  Le  =1,

and this points the way to a plausible modification for cases when Lel.
A completely analytical justification is difficult because of the concentration
terms in Eqs. (15) and (16), but the development can be illustrated
by a specific numerical example. The conditions chosen for calculation
arc u1— 20,000 ft/sec, T1= 322K and p = F577 x 10-'s atm. Also
Pr —0.7 and  Le  =1 or 1-4.

The pressure and temperature would correspond to an altitude of
150,000 ft in the atmosphere(8), but for simplicity the gas is taken to be
pure oxygen and to behave as an ideal dissociating gaso0). This gives
simple expressions for enthalpy, temperature and concentration, e.g.
Fq. (5) (equilibrium conditions assumed). First we shall consider zero
heat transfer conditions, and then consider the case with heat transfer.
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4.3.1  Zero heat transfer, Le=1

In this case  qw  =0 and equation (15) becomes

H — !,Pr

or, in terms of total enthalpy,  Ho,

!,(1 — Pr)u12 (011)2

where, with Couette flow,

!, Pr Ili'

but with boundary layer flow

11, APru12

The resulting total enthalpy Profiles are plotted in Fig. 2(a), as  H 11„

1 2
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FIG. 2. Total energy profiles of a Hat plate boundary layer under zero heat

transfer conditions in oxygen, for u, - 20,000 ft sec and p - 1.577 ... 10-3 atm.

again u/u1, for Couette flow (Eqs. 18 and 16a), modified Couette flow
(Eqs. 18 and 17) and true boundary layer flow (derived from ref. 14).
These show that the modified Couette profile is indistinguishable from
the true boundary layer profile up to a value of u,u, between 0.7 and 0.8.



Features of Hypersonic Fleat Transfer 299

A good approximation to the boundary layer pro file can therefore be
obtained by taking Eq. (15a) (or 18) with  II,  from Eq. (17), to apply up
to  u ui=0.7  and then fairing the coefficient of  it2 from  !,Pr  at  u 1'1-0.7  to
Pr}  at  u1u1=1.0.  (The fairing is indicated by Fig. 1 of ref. 7.)
An important feature of boundary layer flow is found by integrating the

energy equation (Eq. 14) across the boundary layer. This gives

pu (Ho — Hoi)dy =  0 (19)

when the heat transfer is zero. Obviously Eq. (19) would not be satisfied
by the pure Couette flow energy profile (the bottom curve of Fig. 2(a)).

4.3.2  Zero heat transfer, Le=1.4

It now seems reasonable to assume that Eq. (15) may give an equally
good representation of the boundary layer profile (up to  u:u1,---0.7)  in
cases when  Le 0  1, i.e.

H = — ;Pr u2 — (Le — 1)D (c a — Car) (15b)

provided the correct value of  H.,  is chosen. Choosing the correct value of
IL  amounts to choosing the correct coefficients of  ii2  and of  D(ca— car)  at
u:u1=1.  Equation (19) must be satisfied and trial showed that a suitable
value of  Hr  is

= H, u12 — (Le} —1)D (c(l,- — c01).  (20)

Equation (15b) is applied up to  011=0.7  and beyond this the coefficients
of 112 and  D(c„—car)  are faired from  11)r  and  (Le-1)  at  011=0.7  to
1Pr}  and  (Le=' —1)  at  u1'u1=1 •0.  (In checking this solution by Eq. (19),
it was assumed that  Oh  =sin 7,12 .

In all cases of "ideal flat plate" flow  cai=0,  and concentrations elsewhere
in the boundary layer were found from Eqs. (5), (6) and (4) (solution of
Eq. (4) being simplified by the ideal dissociating gas assumption, but
real gas tables could equally well have been used). This involves an
iterative solution between  H, 'I'  and Ca at each point.

The resulting total enthalpy profile is shown in Fig. 2(b), where it is
compared with the profile for  Le=1.  The comparison shows that increas-
ing Lewis number, i.e. increasing the ratio of mass to thermal diffusivity,
reduces the total enthalpy near the wall and this reduction is balanced by
an increase in total enthalpy in the outer regions of the boundary layer.
(This redistribution of energy would be expected by analogy with the
effects of Prandtl number.)

In particular Eq. (20) and Fig. 2(b) show that the recovery enthalpy
//, is decreased appreciably by an increase in Lewis number. The effect
on recovery temperature is smaller because of the large amounts of energy
involved in dissociation. Thus in the present case the recovery temperature
is decreased from 2960' to 2880°K.



300 R. J. :MONAGHAN, L. F. CRABTREE and B. A. WOODS

1 0

C.

l• 0

Le r I

	 Le =I

Le=1 4-0 8

G

0 4

0  2

7, =1500  ° K

0 0
0 0 2 0 4 0 6 o coy, o 0 0 2 04 0 6 08 Li./u, 10

	

(a) ZERO HEAT TRANSFER. (b) WITH HEAT TRANSFER.

FIG. 3. Atomic concentration profiles of a flat plate boundary layer.

it,- 20,000 ft/sec, p -1.577 10 "attn (oxygen).

Finally, Fig. 3(a) gives the corresponding concentration profiles, which
show trends similar to those of the total enthalpy profiles. It should be
noted that as the outer edge of the boundary layer is approached (i.e.
concentrations tending to zero) these concentration profiles are very
sensitive to the fairing between Oh —0.7 and 1.0 of the coefficients of
u2 and  D(Ca—car)  in Eq. (15b).

4.3.3 Heat transfer inchuled,Le-1

In this case Eq. (15) becomes

//  =  11,  + Pr (q-1 u —
I Pr u2 (15e)

and this also is an excellent approximation(7) to the true boundary layer

up to u.u,--0.7. Fairing of the coefficients of u and u2 is then necessary

between u.u,-0.7 and u,u,-1.0 where, from the boundary layer solution(")
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it is easily shown that Eq. (21) corresponds to the well-known relation

kHAcf = Pr  (22)


and an alternative expression for Eq. (15c) is

H = ll,„ -1- Pr  (II, — 011— !,Pr u12(u/u1)2 (23)

This applies up to u..ui=0.7, and between  /0/1=0.7  and 1.0 the coefficients
must be faired17)to give

Hi= 11w+ (H, — — !,,,Pru12

at  u

4.3.4.  Heat transfer included, Le-1.4

It seems plausible to assume that similar reasoning can be applied to
the general case when Le 1 and this leads to the enthalpy profile

H = Pr (L)u — -,;Pr u2 — (Le — 1) 1) (ca — caw)
Tw,

for  u.u,  between 0 and 0.7, fairing into

= H () 111 — Pru12 — (Le — 1) D(ca.,— caw)  (24)

at  u ui=1.0.
Defining  kn  and c1 as before, and for convenience defining the  Hr

contained in  kll  by

= H,+ 1.13ru12 (17)

we find

ktt/cf =(1."(4
11 IL—H„

It is interesting to note that the term in brackets is nearly identical with
the similar term in Eq. (7) for stagnation point heat transfer (Fay and
Riddell).

virtue of basing heat transfer coefficient k,1 on Hr defined by Eq.
(17) is that in many cases both  c„,  and  c„„  may be zero, in which case
Eq. (25) reverts to Eq. (22), i.e. there is then no effect of Lewis number
on the ratio of heat transfer coefficient to skin friction coefficient. However,
it is necessary to remember that the heat transfer becomes zero when

— II, • -H !,P.1411,2 — (L(4 — 1)Dc11, (20)

As before, Eq. (25) is used to give the value of  (q„'T„)  for substitution
in Eq. (15) and, as in the zero heat transfer case, an iterative solution
gives values of //, c„  and T across the boundary layer.

Figure 3(b) shows concentration profiles for wall temperatures of 1500

(15)

(25)
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and 2650 K (zero heat transfer occurs when Tw=2880 K). When  T—
2650 K, the effect of Lewis number is similar to that found under zero
heat transfer conditions, i.e. increasing the Lewis number decreases the
concentration near the wall, but increases it near the free stream. However,
a feature of Eq. (15) is that if ca„. 0 (in addition to  c(1,— 0), then the
Lewis number term can serve only to reduce the concentration at all
points. This is illustrated by the curve for Tw —1500 K and might be
regarded as a slightly puzzling feature.

The same general trends are shown by the temperature profiles in Fig. 4.
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FIG. 4. Temperature pro files of a Hat plate boundary layer.


u, 20,000 ft.'see, p 1-577 .•: 10-3 atm (oxygen).

In addition, Fig. 4(a), for 71„--1500 K, includes a temperature profile
representative of the "frozen state", i.e. reaction rates so slow that in this
case no dissociation at all occurs within the boundary layer. Comparison
with the equilibrium profiles shows the powerful contribution of dissocia-
tion energy over the central portion of the boundary layer. (For  Lenz  I,
the enthalpy distribution would be the same for the "frozen state" as for
the equilibrium boundary layer.)

However, the profiles merge as the wall is approached, which indicates
(to the accuracy of the plot) that reaction rate may have little, if any,
influence on heat transfer to the wall,  provided that  the atomic concentra-
tion is zero both at the wall and in the stream outside the boundary layer.
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4.4  Laminar Heat Transfer to a Flat Plate under Zero Pressure Gradient,
with Air as the Working Fluid
Compared with the pure diatomic gas considered so far in this section,

air, even at low temperatures, is a mixture of several gases and the number
of species increases when dissociation occurs. Thus additional terms
appear in the summation included in diffusion term of the energy equation
(Eq. 12) and there is a concentration equation for each species. Luckily
the major components of air (nitrogen and oxygen) seem likely to have
about the same collision diameters, in which case it may be sufficient to
treat the air as essentially a two-component gas (molecules and atoms)
with a single diffusion coefficient,  D„.

In estimating heat transfer we are concerned primarily with the transport
properties, with Prandtl and Lewis numbers and with the amount of
dissociation energy for given enthalpy and pressure. These may be found
in tables of the thermodynamic properties of air, e.g. ref. 9 and references
contained therein.

To avoid confusion it is preferable to re-write the relevant equations of
Section 4.3 as follows :

enthalpy for zero heat transfer
1-17. = H1+Prt u,2 — (Le= — 1) {(H D)r — (H } (26)

where (as in equation 7)
HD=average atomic dissociation energy times atom mass fraction.

Relation between kH and cf, where Hu, < Hr
Taking

= TWf plul2,

kx = qw/Plui(HI — Hw),

(qu,  denotes heat transfer from air to body)
with

=
then

(HD) — (HD)wl
= (1 -1- (Le=— 1) 	

H H
(27)

r — u, I
Finally it has been shown (Section 4.1) that when Le =1 ,  either the

mean(") or the intermediate01) enthalpy formulae should apply for
calculating skin friction coefficient. These state that

cf* = 0.664 (R,*)-!, (28)
where

ef* = Tzel4)*ul2

p*uix
Rx*  is Reynolds number

and the asterisk denotes that density and viscosity are to be evaluated at
the temperature corresponding to the enthalpy
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II* — JI7 -  0.54  — H1)  046  (11,- —  (29)

if "mean enthalpy" is used, or

II* = H1 0.5  (11„. — H,)  0-22 —  (30)

if "intermediate enthalpy" is used. Prandtl number should be evaluated
at the sarne temperature. (Alean skin friction coefficient is twice the local
value of Eq. 28.)

When  Le ol  , there seems to be no reason why a similar procedure
should not apply, but if both  Hu,  and  II,  are below the dissociation level
then there will be a small reduction in thc value of  II*  (note Eq. (15) and
the fact that "mean enthalpy" is the mean of  II  with respect to u taken
across the boundary layer).

Equations (27), (28) and (30) were used to determine the laminar
equilibrium temperatures discussed in Section 5 and no account was taken
of the reduction in H* when  Leo 1.

Before concluding this section it is of interest to consider the conditions
for the onset of dissociation effects. Since these are pressure dependent,
an example is chosen where p=10-2 atm.

4.4.1 Conditions for the onset of dissociation effects. p=10-2  atm

Oxygen will be the first component of air to dissociate as the temperature
is raised, because its dissociation energy is less than half that of nitrogen.
Furthermore its dissociation is essentially complete before the dissociation
of nitrogen begins, so that approximately the two reactions can be treated
independentlym. Our interest, therefore, is in the onset of the dissociation
of oxygen. Define

c„=ratio of the mass of atomic oxygen to the total mass of oxygen
in the system (per unit volume)

and note that oxygen accounts for only 2(r „ of the total mass per unit
volume. Then, under equilibrium conditions we have (see ref. 9)

4c„2 K1,

c(,)p
(31)

ca)-

where K » is the pressure equilibrium constant (for variation with T, see
ref. 9) whereas if oxygen were the only gas in the system, the relation

ould be

1

ca2

ea-
(32)

The resulting variations of c„ with 7', for p -- 10  2 atm, are given in
Fig. 5(a), which shows that a given amount of dissociation (relative to initial
concentration) is reached earlier by oxygen in air than by oxygen alone.

For the oxygen in air, dissociation starts at about 2000 K and is
essentially complete by 3000 K. Increasing the pressure would delay the
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FIG. 5. Conditions for the onset of dissociation effects in air at p -10-2 atm.

onset of dissociation, whereas decreasing the pressure would promote
earlier dissociation.

Continuing now with oxygen in air, the equation of state during oxygen
dissociation is

p = p (1 ± 0.2ca)  R T /Wm (33)

and the specific dissociation enthalpy is

HD = 0-2caD (34)
with

D = 3.69 kcalig.

Enthalpy distributions across the flat plate boundary layer may now be
calculated from Eqs. (15) and (34) (in conjunction with the tables of
ref. 9) and Fig. 5(b) shows conditions for the onset of dissociation effects
within the boundary layer, when p=10 -2 atm.

The lower curve gives the values of surface temperature (TO and
flight velocity ( V) for a reduction of 1" „ in maximum enthalpy by atomic
diffusion, when Le-1.4. (This is relevant to the calculation of mean
enthalpy when Le-1.4, see remarks above.) Under zero heat transfer
conditions this reduction occurs at just above 8000 ft/sec, but is delayed
to just below 16,000 ft!sec if the surface temperature is equal to ambient
temperature (taken to be 220 K). The upper curve shows when the mean
enthalpy, for Le- 1  contains 1"„ dissociation energy (which may be of
interest when making heat transfer calculations) and, once again, reduction
in surface temperature allows an appreciable increase in flight speed.

21)
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4.5  Turbulent Heat Transfer to a Flat Plate under Zero Pressure Gradient,
with Air as the Working Fluid

The "mean" or "intermediate" enthalpy approach is valid for turbulent

boundary layer heat transfer without dissociation(12), so in view of the

foregoing conclusions concerning laminar boundary layers, it was applied
also to cases with dissociation. The relevant formulae are

	

Hr' = H, ± (0.88)1u12 (35)

kH* = 0476 (logioRw*)-245 (36a)


for local heat transfer and

	

kH* = 0.28 (logioRx*)-2.6 (36b)

for mean heat transfer.

5. EQUILIBRIUM TEMPERATURES

Equilibrium temperature is reached when aerodynamic heating into
the surface is balanced by radiative heat loss from the surface, i.e.

qw = qr

where  q,,  is obtained from the formulae of Sections 3 and 4.4, 4.5,

and

	

qr = 2.78 > 10-'2€T,04 (37)

C. H. U./ft2 sec

where E is the emissivity factor of the surface and was assumed to be 0.9
in the calculations leading to the results of this section. These results are
detailed below.

5.1  Hemisphere

Figure 6 gives the flight conditions for equilibrium temperatures of
1000K and 1500K on a hemisphere of 2 ft diameter. (Assuming laminar
boundary layers throughout.)

The plot is of Reynolds number per foot, based on ambient conditions
and flight speed, i.e.

12 'ft — 	
tIcc

against flight speed ( V) in ft/sec. Curves of constant altitude (ft) are
plotted across the graph.

The main features are

1. At sea-level the speed must be restricted to about 4000 ft, sec for
1000'K and about 7000 ft 'sec for 1500'K and these speeds can be
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SEA LEVEL 4-- ALTITUDE 40,000 FT

80,000 FT

I\
MEAN TEMPERATURE

136
= 1500° l<

120,000 FT

MEAN TEMPERATURE STAGNATION POINT
'.10100° AT 1500° K

1o5

160,000 FT


200,000 FT


000 FT

280,000 FT

V  FT /SEC
o 5 000 IS. 00  20.00 .000 30000

FIG. 6. Flight conditions for equilibrium temperatures of 1000 and

1500 K on a hemisphere of 2 ft diameter (laminar boundary layer).

increased only to the orders of 6000ft/sec and 8000 to 10,000 ft/sec
by increasing the altitude to 120,000ft.

It is necessary to go above 180,000to 200,000ft altitude before the
speeds can be increased rapidly above the 10,000-15,000ft/sec level
and satellite velocity demands altitudes of 280,000ft and more, and

Reynolds numbers are such that the assumption of laminar boundary
layers would seem justified at altitudes above 80,000ft. Turbulent
boundary layers at lower altitudes would restrict the speeds (at these
altitudes) more severely.

Continuum flow conditions were assumed throughout. This might not
seem to be justified at the higher altitudes when Reynolds numbers per
foot are of the order of 102and speeds are above 10,000 ft,sec. However,
it must be emphasized that these Reynolds numbers are based on ambient
conditions and the increase in density through the bow shock-wave could
be sufficient to ensure continuum flow conditions outside the boundary
layer-(' 3).
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5.2 "Ideal Flat Plate"

Figure 7 gives the results for an ideal flat plate, which assumes an ideally

Ron


F T.

ALTITUDESEA LEVEL -.a-
40 000 FT

10 90,000 FT -

X 10 FT. (T, 1500° K)

X 1 FT. 120, 000 FT

N N.

iG0000 FT :

2 00.000 FT

bo4
0 5,000 10,000 15 000 20,000

V FT./SEC.

FIG. 7. Flight conditions for an equilibrium local temperature of 1500 K

on an "ideal" fiat plate.

sharp leading edge, with attached shock wave, so that the pressure is
constant along the length of the plate and equal to ambient pressure.

The presentation is the same as in Fig. 6, but the curves are for
temperatures of 1500'K at distances of 1/10, 1 and 10 ft from the leading
edge. Laminar or turbulent heat transfer has been assumed according to
the probable state of the boundary layer at the various locations.

Local densities (outside the boundary layer) are equal to ambient
density and hence are considerably less than the corresponding densities
around a hemisphere. The resulting reduction in aerodynamic heating
rate accounts in part for the much higher velocities that are permissible
for the flat plate than for the hemisphere. (This feature is considered in
more detail in Section 5.3.) Satellite velocity could be achieved at altitudes
less than 200,000 ft.

The other interesting feature is the more rapid increase in speed with
altitude that occurs with turbulent as compared with laminar heat transfer.
This arises from the fact that turbulent heat transfer coefficients drop more
rapidly than laminar heat transfer coefficients as flight speed is increased02).

Finally it is of interest to consider the effect of leading edge thickness.
According to Creager(") the net effect on heat transfer will be to increase
the rates near to the leading edge but to decrease the rates at a distance
from the leading edge, as compared with the ideal flat plate values. A rough

166

TURBULENT.

— — — LAMINAR

los

25,000 30,000
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comparison indicates that, in Fig. 7, the curve for 10 x-- 1 _ ft would move
to the left, the curve for 1 ft would not be altered much, and thc
curve for x -10 ft would move slightly to the right.

Thus it would seem that slender shapes could be very suitable for
sustained hypersonic flight, provided the leading edges could be protected
(e.g. by mass transfer cooling).

5.3 Comparison Between Hemisphere, Flat Plate and Cone

Figure 8 shows the flight conditions for an equilibrium temperature of
1500 K,

loe
Tur =1500° I< SEA  LEVEL LTITUDE 40,000 FT.

11.
FT 	 TURBULENT.

— — 	 LAMINAR.

10 IDEAL FLAT PLATE 80,000 FT.

15° SHARP
CONE

\

106

los

120.000 FT

160,000 FT.

200  .000 FT

2.40,000 FT

HEMISPHERE ----A\

\

1o4

V FT.ISEC.
- ---..„21:10,000 FT.

103  0 5.300 10 000 1 800  20.000 c5000 3(1.000

FIG. 8. Comparison of flight conditions for mean surface temperatures of

1500'K on a hemisphere (2 ft diameter) and over a length of 1 foot on a


sharp cone (15 included angle) and on an ideal flat plate.

over a hemisphere of 2 ft diameter
over a length of 1 ft from the leading edge of an ideal flat plate

and (3) over a length of 1 ft from the tip of a sharp-tipped cone* of 15'
included angle.

The boundary lavers were taken to be laminar or turbulent in accordance
with the Reynolds numbers involved.

* !feat transfer rates for the cone are based on local conditions; with laminar
lmundary layers are 73 0,, above those on a flat plate but with turbulent boundary
layers are assumed to be about 15 0,, greater than those on a flat plate.
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The main conclusion has already been indicated: namely, that for flight

speeds above 10,000 ft/sec there may be considerable benefit to be gained

from using a slender rather than a blunt shape (provided that the tip or

leading edge can be protected).

5.4  Variation of Equilibrium 'Temperature with Radius or Length

The results quoted so far have been based mainly on a radius (r0 ) or

length (x) of 1 ft. The effect on laminar equilibrium temperature of varying

this reference length is shown in Fig. 9, for a speed of 10,000 ft/sec and

various altitudes.
Figure 9(a) is for a hemisphere and plots mean equilibrium temperature
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FtG. 9. Variation of laminar equilibrium temperature with radius of a
hemisphere and with length on a flat plate.

(over the forward face) against radius, the latter varying from 0.1 to 10 ft,
for altitudes of 120,000 ft and 200,000 ft. At both' altitudes

—r1, 0." (38)

Now in the limit, if the velocity is allowed to tend to infinity, the

stagnation enthalpy  (II„ or IL) will become very large compared with the

enthalpy at the wall (H„-). Inspection of Eq. 8 then shows that for given

flight speed and altitude the aerodynamic heating rate

=  const. (39)



Features of Hypersonic Heat Transfer 311

whereas the radiative heat loss

q,- =  const. ( Tw4) (37)

so that when q,, = we have
Tw „ r0-118 = r0-0.125. (40)

This limiting variation is plotted on Fig. 9(a) for comparison with the
results at 120,000 ft (taking the value for r,  —1 ft as known from previous
calculation). Comparison shows that Eq. (40) would over-estimate the
temperature for ro — 0.1 ft by 80'C (in 1900°K) and would under-estimate
the temperature for ro —10 ft by 50°C (in 1150°K), i.e. an error of about
41% in each case.

For higher flight speeds this error would become less, so it is suggested
that Eq. (40) may be used as a "rule of thumb" when considering the
variation with radius of equilibrium temperatures on hemispheres at speeds
of10,000 ft/sec or more.

Figure9(b) shows the variation of local laminar equilibrium temperature
ith length from the leading edge of a flat plate at an altitude of 120,000 ft.

A similar argument shows that in the limit

x-'/8 (41)

and this gives a good approximation to the results for 10,000 ft/sec shown
in Fig. 9(b). Indeed, if leading edge effects are included, equation (39)
might give an even better approximation to reality (although it would
probably underestimate the temperature close to the leading edge, e.g. at
x=1/10 ft).

Finally with turbulent boundary layers we would have,

const.x-V6
in the limit, so that

Ty, x-1121 (42)

would seem to be a suitable approximation for the variation of turbulent
equilibrium temperature with distance from the effective start of the
turbulent boundary layer.
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LIST OF SYMBOLS

mass fraction of the ith species

Ca atomic mass fraction
cm molecular mass fraction
CP specific heat at constant pressure
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6, mean specific heat at constant pressure

et-  local skin friction coefficient=7, 43,11,2

D dissociation energy

012 diffusion coefficient, atoms through molecules

// specific enthalpy

/4 specific total enthalpy —II+ ?,u2

thermal conductivity

heat transfer coefficient =qw plugir —
(Stanton number)

Le  Lewis number ----pci,D12k

M Mach number

static pressure

Pr Prandtl number =//e„,k

heat transferred per unit area per unit time (from gas to surface)

R universal gas constant

R, Reynolds number, puxii,

ro nose radius of body

T temperature ('K)

u,v components of velocity in the directions of x and y
f' flight speed

molecular weight

co-ordinate along surface of body

co-ordinate normal to surface of body

ratio of specific heats=e ce, where e, is specific heat at constant
volume

rt viscosity

density

shearing stress

Suffixes

dissociation

a  atomic

nr molecular

recovery, i.e. recovery enthalpy or at recovery enthalpy.
stagnation point (outside boundary layer)
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wall (surface of body)

1 local stream outside boundary layer

cc ambient atmosphere

SL sea-level
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